Data Bottleneck Solutions for your Business with Compact CWDM Mux and Demux

Communication networks are vulnerable to data congestion. This limits the end users from accessing certain links including mobile radio towers. The problem has led to management of dedicated links by a large number of wireless carriers through the optical fiber network connection.

Depending on the requirement standards the service provider is expected to comply, some even go to the extent of claiming additional dedicated strands which give access and core meshes to the mobile tower sites.  This trend depletes the number of available fiber strands denying new service providers access to mobile towers.

Thanks to the art of technology which has introduced data bottleneck solution to businesses. The compact CWDM multiplexer allows fiber capacity enhancement without the need to increase the number of fiber strands. This ensures easy communication and connectivity to mobile towers by giving quick access without bugs.

Features

  • High channel isolation
  • Mini size
  • High insertion loss
  • Epoxy-free optical path
  • Large bandwidth

Applications

  • Mobile phone applications
  • WDM network
  • Access network
  • Tele-communication
  • Fiber optic amplifier

How it works

Compact CWDM multiplexer works by either extracting or inaugurating several signals which are broadcasted through different fiber wavelengths to efficient create more different channels. A MUX conglomerates individual light channels to the fiber at the sending end of the data link.

 On arrival, a demultiplexer (DEMUX) applies a similar optical conformation in a reverse direction, propagating via the device. The DEMUX optical filter singles out the incoming wavelengths and pairs each channel separately with fiber. This increases the number of channels transmitted through the fiber.

As the demand for more subscribers continues to grow, the CWDM scales the supply of additional bandwidth by handling bottlenecks without substantial equipment modification. According to the IEEE standards. CWDM is compact and has the capability of withstanding outside plant (OSP) environmental conditions. This allows deployment of uncooled and unheated equipment and cabinets.

Advantages

Saves money

CWDM helps access network operators lower their costs by providing quality connections to their users without the need of investing on more fiber links.

High quality

Compact CWDM is designed using modern technology and complies with IEEE standards making service providers meet the global communication standards. Besides, the device has the capability of withstanding outside the plant environmental conditions giving providers favorable installation conditions.

Reduces data bugs

Networks are prone to bottlenecks. However, the device scales additional bandwidth without the need of substantial modification of the device. This ensures quick access to links despite the increase in the number of subscribers. This has enabled users to enjoy high-speed internet, telephony services, and on-demand videos without limited access.

Before making use of this new technology, access network operators must satisfy the following requirements.

  1. Bandwidth of up to 10Gps for each first-time backhaul link
  2. Facility to storing stable legacy fiber connections of between 1550nm or 1310nm
  3. Typical spans of up to 80km
  4. Uncomplicated operations which are reliable
  5. Wireless carrier segregation bandwidth
  6. Packaged and long-lasting environmental constraints for installation

Learning the Different Coating Stripping Methods

The cladding power stripper also referred to as the multimode optical power stripper is designed for amplifier applications and high power fiber laser. It is an ideal device  for ASE, residual pump power stripping, core modes that have escaped from double cladding fibers inner cladding while ensuring preservation of single power minimal degradation and beam quality (M2). Single power that is reflected into the inner cladding may also be stripped out too.  The handling capability of the stripping power goes to 800W or at times may be even higher

Stripping the Coating

The fibers that most reputable companies supply all come with a standard  acrylate single layer coating or, in some such as the high power products, a coating that is high temperature enduring. In comparison to dual layer coatings, the coatings that are single layer are more brittle and smooth. The coating can be removed readily using the conventional tools for fiber stripping such as the Fitel S-210 Clauss or CFS-1 for 125 μm cladding diameter fiber or for larger cladding diameters the Clauss No Nik stripper is used. For fibers whose outer diameter is non-standard, it is recommended that an adjustable stripper is used.  Thermal strippers such as those that are attached to the Schleuniger FiberStrip 7030 or the Vytran FFS-2000 can be used for all fiber in a safe way.

Alternatively, chemical stripping of fibers can be done using an appropriate solvent. For example, the coating can be exposed for one minute to sulfuric acid at 120°C sulfuric acid. Before the fiber is dipped into the liquid, the tip should be sealed with a drop of glue of 2 mm in diameter or through the end fiber hole collapsing using a fusion splicer.  It is worth noting that most glue types are dissolved in this acid, but epoxies that are two-component such as the Epotek ND353 tends to dissolve in a slower manner than the coating.

It is also possible to obtain chemical stripping through application on the fiber tip, of paint stripper. The paint stripper is usually in the form of a gel so as to reduce the occurrence of out-gassing and can be applied easily using a small brush. After a minute or so, the coating becomes soft and is removed easily using a lens tissue. It is worth noting that paint stripper typically contains dichloromethane (CH2Cl2) and as such there may be restrictions by local regulations to use it. For lower quality and faster stripping, another option would be to use a normal cigarette lighter to burn the coating off. However, the fiber may end up becoming brittle hence not the best choice for stripping.

Know the Difference between CWDM and DWDM

A WDM (Wavelength Division Multiplexing) is a system that uses a multiplexing (at the transmitter) and a demultiplexer (at the receiver) for the completion of the process and transmission of the signals.

The WDM is divided into three types (WDM, CWDM and DWDM) on the basis of wavelength difference among the three. The article discusses the main differences among CWDM and DWDM.

 

CWDM stands for Coarse Wavelength Division Multiplexing, and DWDM is the acronym for Dense Wavelength Division Multiplexing. Whether DWDM or CWDM, both are the types of WDM mechanism and have an array of differencess.

Let’s get acquainted with the chief difference between CWDM and DWDM:

  • The Coarse WDM has less than 8 active wavelengths per optical fiber whereas the DWDM has more than 8 active wavelengths per optical fiber.
  • The CWDM has lower capacity strength and hence is low in costs; conversely the DWDM possesses high capacity –this leads to an augmented price which is worth its qualities.
  • When it comes to the difference between the distance of the two, the CWDM has short range communication because the wavelength is not amplified, and DWDM has long range communication.
  • CWDM Mux and Demux systems are developed to be used in multiplexing multiple CWDM channels into one or two fibers.
  • Another major difference is that DWDM systems are made for longer haul transmittal, by keeping the wavelengths closely packed. Also, a DWDM device can transmit more data over long distances and to a significantly larger run of cable with lesser interference than a comparable CWDM system which has a shorter haul transmittal.
  • Furthermore, the Dense Wavelength Division Multiplying systems are capable to fit more than forty different data streams in the amount akin to that of fiber used for two data streams in a CWDM system.

Apart from all the difference there is one more and that is wavelength drift is possible in CWDM, but when it comes to the DWDM –precision lasers are needed to keep channels on the target.

Beyond being different from each other –these systems play different roles in the effective transfer of the signals, and thereby both are important enough.